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ABSTRACT

In this paper, the performance of a maximum likelihood estimator
(MLE) for a signal model accounting for possible coherence of the
signal sources is studied. It is done by combining a dynamical evolu-
tion model of the source amplitude, namely a Gaussian random walk,
with the usual observation model, assumed to be Gaussian. This im-
plies an underlying relation between the signal source parameters
and both the mean and the covariance matrix of the observations,
and hence leads to a more general model than those usually used in
array processing, such as the conditional signal model or the uncon-
ditional one. The resulting so-called “generalized conditional MLE”
can be expressed both in batch form and in recursive form, which is
updated since a term was missing in a previous paper. In addition, we
derive the Cramér-Rao bounds associated with a model of this type,
accounting for the fluctuations of a radar target’s backscattering co-
efficient. Simulation results highlight a non-standard behavior of the
estimators: consistent but not efficient for frequencies, efficient but
non-consistent for amplitudes.

Index Terms— parameter estimation, conditional maximum
likelihood estimators, consistency, efficiency, Cramér-Rao bounds

1. INTRODUCTION

Since its introduction by R. A. Fisher in deterministic parameter es-
timation [1, 2], the method of maximum likelihood (ML) estimation
has become one of the most widespread methods of estimation. The
ongoing success of ML estimators (MLEs) originates from the fact
that, under reasonably general conditions on the probabilistic obser-
vation model [2, pp.500-504], the MLEs are, as the number of inde-
pendent observations N approaches infinity (a.k.a. the large sample
regime), consistent, efficient and Gaussian distributed, that is MLEs
converge in probability to the correct values as N → ∞ and MLEs
are asymptotically unbiased and their covariance matrix asymptoti-
cally converges to the Cramér-Rao bound [2]. Last, still in the large
sample regime, Fisher [1] showed that if the MLEs are consistent
then they are also asymptotically efficient. Thus an attractive re-
sult would be the generalization of the aforementioned properties to
the situation where the observations are slightly dependent, where
the affordable degree of dependency would be still to be assessed.
Unfortunately, if one considers the generalized conditional MLE
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(GCMLE) lately introduced in [3], a further study introduced in the
present communication shows that the known asymptotic properties
of the MLEs in the large sample regime does not hold if the obser-
vations are not strictly independent, even in the case of a Gaussian
observation model. Indeed, let us consider the following complex
Gaussian observation model in the single signal source case:

xl = fl−1 xl−1 + wl−1, 2 ≤ l ≤ k, (1a)
yl = hl(θ)xl + vl, 1 ≤ l ≤ k, (1b)

where the Gaussian measurement noise sequence {vl}kl=1 is tem-
porally and spatially white (vl ∼ CN

(
0, σ2

vI
)
), and the fluctu-

ation noise sequence {wl}k−1
l=1 is Gaussian, temporally white and

uncorrelated with the noise sequence {vl}kl=1. Then the MLEs of
x1 and θ based on observation vectors yl on a horizon of k ob-
servations yields the so-called GCMLEs x̂1|k and θ̂k. Indeed, (1a–
1b) is a generalization of the usual conditional signal model (CSM)
obtained where

{
σ2
wl

= 0
}k−1

l=1
[4] and yielding the usual condi-

tional MLEs (CMLEs). Due to the Gaussian random walk between
observations of the signal source amplitudes, the parameter vector
θ is connected with both the expectation value and the covariance
matrix [3], which is a significant change in comparison with the
CSM where θ is connected with the expectation only [4]. Inter-
estingly enough, the amplitudes Gaussian random walk (1a) intro-
duces as well a correlation from one observation to another (since
Cyl,yl−1 = fl−1σ

2
xl−1

hl (θ)hHl−1 (θ)), and thus, a degree of statis-
tical dependency from one observation to another. As a contribution
to the characterization of the MLEs in the large sample regime, we
show that the combination of (even slightly) dependent observations,
may lead to exhibit, on the one hand, a MLE which is asymptoti-
cally not consistent but efficient (x̂1|k), and on the other hand a MLE
(θ̂k) which is asymptotically consistent but not efficient, both for the
same observation model. To do this, we compute the Cramér-Rao
bounds for the parameter vector ξ = (x1, θ)

T and we also correct
the GCMLE for the parameter of interest θ previously released [3,
(7a-7b)], which appears to be incorrect since a term is missing in
Jk (θ) (7c), term for which we propose a recursive expression as
well. The correctness of the noticed behavior is also checked by
highlighting the perfect match between the recursive and the batch
forms of the estimator.

The rest of this paper is organized as follows. In Section 2, we
provide some results about GCMLEs, including their batch as well
as their recursive formulation. A correction is brought to the recur-
sive form presented in [3]. In Section 3, we focus on a particular



model covered by (1a-1b), that may account for the fluctuations of
a radar target’s backscattering coefficient. The Cramér-Rao bounds
for the parameter vector ξ are derived, and simulation results are
provided, showing the non-standard behavior of the estimators de-
scribed above.

2. BACKGROUND ON GCMLES FOR A SINGLE SOURCE

2.1. Analytical expressions (batch form)

First, we can notice that the dynamics equation (1a) can be recast,
for 2 ≤ l ≤ k, as

xl = bl,1 x1 + gT
l wl−1, (2a)

where, for i ≥ 1, we have defined

bl,i ,


fl−1 fl−2 . . . fi, if l > i,

1, if l = i,

0, if l < i,

as well as, for l ≥ 2, gl , (bl,2, . . . , bl,l)
T ∈ Cl−1, and wl−1 ,

(w1, . . . , wl−1)
T ∈ Cl−1. In turn, the measurement equation (1b)

can be rewritten, for l = 1, . . . , k, as

yl = al(θ)x1 + nl(θ), (2b)

after defining al(θ) , hl(θ) bl,1, and∣∣∣∣∣ n1 , v1,

nl(θ) , vl + hl(θ)
(
gT
l wl−1

)
, for 2 ≤ l ≤ k.

By vertically concatenating the observation vectors in (2b), we ob-
tain

yk = ak(θ)x1 + nk(θ) (2c)

where ak(θ) , (aT
1 (θ), . . . ,a

T
k (θ))

T, and nk(θ) , (nT
1 ,

nT
2 (θ), . . . ,n

T
k (θ))

T. Since we assume that σ2
v, {fl}k−1

l=1 and
{σ2

wl
}k−1
l=1 are known, the set of unknown parameters reduces to the

vector ξ = (θT, x1)
T, and we have yk ∼ CN (ak(θ)x1,Cnk (θ)).

Consequently, the log-likelihood function can be expressed, up to a
constant value, as [5, 6]:

L (yk;θ, x1) = − ln |Cnk (θ)|

− (yk − ak (θ)x1)
H C−1

nk
(θ) (yk − ak (θ)x1) , (3)

and the GCMLEs of x1 and θ based on yk are given by:

(x̂1|k, θ̂k) = argmax
x1,θ

{L (yk;θ, x1)} . (4)

Then, it is well known [5, 6] that x̂1|k = x1|k(θ̂k), where

x1|k(θ) =
(
aHk (θ)C−1

nk
(θ)ak(θ)

)−1

aH
k (θ)C−1

nk
(θ)yk, (5)

θ̂k = argmax
θ

{
L
(
yk;θ, x1|k (θ)

)}
, (6)

or equivalently, after some calculus:

θ̂k = argmax
θ

{Ik (θ)− Jk (θ)} , (7a)

in which we have defined

Ik (θ) =
∥∥ΠC−1

nk
(θ)

ak(θ)
yk
∥∥2
C−1

nk
(θ)
, (7b)

Jk (θ) = ‖yk‖
2

C−1
nk

(θ)
+ ln |Cnk (θ)| , (7c)

where ΠC
A = A

(
AHCA

)−1
AHC and ‖u‖C denote, respec-

tively, the oblique projection matrix on span {A} and the norm of
vector u for the Hermitian inner product defined by the Hermitian
positive-definite matrix C, i.e., 〈u,v〉 , uHCv.

2.2. Recursive form of GCMLEs

It is worth noticing that the term ‖yk‖2C−1
nk

(θ)
is missing in [3], a

mistake corrected in (7c). As mentioned in Section 1, even if the
estimator of θ and x1 can be computed from (5) and (7a)–(7c), this
task rapidly becomes prohibitive as k increases, due to the necessity
of inverting the covariance matrix Cnk (θ) with sizeNk×Nk. This
explains the necessity of seeking recursive forms of these estimators,
that does not require such a computational power.

Recursive forms for x1|k(θ), Ik(θ) and ln|Cnk (θ)| have al-
ready been presented in [3], to which the reader is referred for the
details on the way to obtain them. In the following, we focus on
obtaining a recursive form for ‖yk‖2C−1

nk
(θ)

. By dropping the de-

pendence on θ, splitting the covariance matrix Cnk (θ) into the four

blocks
[ Cnk−1

Cnk−1,nk

CH
nk−1,nk

Cnk

]
, and using the block inversion iden-

tity [7, (14.11), p. 293] we obtain C−1
nk

=
[
C11 C12

CH
12 C22

]
, with

Cnk|nk−1
, Cnk −CH

nk−1,nk
C−1

nk−1
Cnk−1,nk ,

C11 , C−1
nk−1

+ C−1
nk−1

Cnk−1,nkC−1
nk|nk−1

CH
nk−1,nk

C−1
nk−1

,

C12 , −C−1
nk−1

Cnk−1,nkC−1
nk|nk−1

,

C22 , C−1
nk|nk−1

.

Hence, by splitting yk into (yT
k−1,y

T
k )

T and performing the block
product in ‖yk‖2C−1

nk
(θ)

= yH
kC−1

nk
yk, we obtain

yH
kC−1

nk
yk = yH

k−1C
−1
nk−1

yk−1

+
(
yk − ŷk|k−1

)H
C−1

nk|nk−1

(
yk − ŷk|k−1

)
where ŷk|k−1 , Cnk,nk−1C−1

nk−1
yk−1. By the way, Cx1 = 0

implies (2c) Cyk
= Cnk , Cyk|yk−1

= Cnk|nk−1
. Thus ŷk|k−1 =

Cyk,yk−1
C−1

yk−1
yk−1 which can be connected to the Kalman filter

estimate of x̂k whose batch form is given by x̂bk|k = Cxk,yk
C−1

yk
yk.

Therefore ŷk|k−1 can be computed recursively as follows

ŷbk|k−1 = hkfk−1x̂
b
k−1|k−1, x̂

b
k|k = x̂bk|k−1 + Kb

k(yk − ŷbk|k−1),

where Kb
k is obtained from the following recursion:

Cxk|yk−1
= fk−1Cxk−1|yk−1

f∗k−1 + Cwk−1 ,

Cyk|yk−1
= HkCxk|yk−1

HH
k + Cvk ,

Kb
k = Cxk|yk−1

hHk C−1
yk|yk−1

,

Cxk|yk
= (1−Kb

khk)Cxk|yk−1
,

and x̂b1|1 = Cx1,y1C−1
y1

y1 = 0.



3. CASE OF A PARTIALLY COHERENT SOURCE

3.1. Model and assumptions

Let us consider a radar system consisting of a 1-element antenna ar-
ray receiving scaled, time-delayed, and Doppler-shifted echoes of a
known complex bandpass signal eT (t) ej2πfct, where fc is the car-
rier frequency and eT (t) is the envelope of the emitted signal. The
antenna receives a pulse train (burst) of N pulses with a pulse repe-
tition interval T , backscattered by a “slow” moving target [8]. The
target is assumed to have a radial motion towards the radar with an
imposed constant radial speed v (r (t) = r0 + vt) and a constant
aspect angle, which leads to a constant complex backscattering co-
efficient ρ along the trajectory. In order to increase the precision of
the measurement of ρ, k observations are made along the trajectory.
For the sake of illustration, the time tl, 1 ≤ l ≤ k, are set such that
r2l = r21/f

l−1. However, in a real-life experiment some experimen-
tal factors generally prevent from having a constant backscattering
coefficient. For instance, it may be difficult for a target to keep a
strictly constant radial trajectory; or the radar phase coherency may
not be kept with a sufficient precision during all the observations;
last, fluctuation of the propagation medium are sometimes unavoid-
able during the whole observation time interval. All these factors
can be taken into account globally by introducing a random fluctua-
tion from observation to observation leading to following simplified
observation model at the output of the range matched filter [8]:

2 ≤ l ≤ k :

{
yl =

(
h(θ) β

r21
f l−1

)
xl + vl

xl = κxl−1 + wl−1

, (9)

with hl(θ) = h(θ) = (1, ej2πθ, · · · , ej2π(N−1)θ)T ∈ CN , β ∈ C,
r1 ∈ R+, f ∈ R+, and κ ∈ C, 0 ≤ |κ| ≤ 1. In (9), θ = −2vT/λc,
−0.5 ≤ θ ≤ 0.5, is the normalized Doppler frequency of the tar-
get, λc = c/fc is the wavelength, β represents the complex factor
including transmission power, antenna gain and signal processing
gains, and vl is a temporally white thermal noise with known power
σ2
v. Since the backscattered energy of the target is given by |ρ|2 on

the one hand, and byE[|xk|2] on the other hand, the assumption of a
constant backscattering coefficient impliesE[|xk|2] = |x1|2 = |ρ|2,
which leads to σ2

wl−1
= (1− |κ|2)|x1|2. By noticing that the model

(9) belongs to the class described by (1a–1b), we can write it under
the form (2a–2c), with bl,i = κl−i, al(θ) =

β

r21
(fκ)l−1h(θ),

n1 = v1, nl(θ) = vl +
β

r21
fk−1h(θ)

l−1∑
i=1

κl−i−1wl (10)

for 2 ≤ l ≤ k, 1 ≤ i ≤ l. A similar form as (2c) can thus
be obtained, with ak(θ) , β

r21
(fk ⊗ h (θ)) ∈ CkN , in which

fk , (1, fκ, (fκ)2, . . . , (fκ)k−1)T ∈ Ck and “⊗” denotes the
Krönecker product. We consequently have yk ∼ CN (µ,C), with
µ = ak(θ)x1, and the covariance matrix C , Cnk (θ) can be
written as the block matrix

C =


Cn1

Cn1n2
... Cn1nk

Cn2n1
Cn2

...
. . .

Cnkn1 ... Cnk

 (11)

after dropping the dependency on θ for convenience, and defining the
blocks Cnlnl′ , E[nln

H
l′ ] = Cnl′nl as the cross-covariance matri-

ces between nl and nl′ . In particular, we can notice that Cn1 = σ2
vI

and Cn1nl = Cnln1 = 0, from (10). The other blocks are given by

Cnlnl′ = σ2
vδ
l′
l IN +

|β|2

r41
f l+l

′−2h (θ)hH (θ)

× E
[
l−1∑
i=1

κl−1−iwi
l′−1∑
i′=1

(κ∗)
l′−1−i′

w∗i′

](12)

where δl
′
l denotes the Krönecker delta (equals 1 if l = l′, equals 0

otherwise). The expectation term in (12) can be further simplified as

E

[(
l−1∑
i=1

κl−1−iwi

)(
l′−1∑
i′=1

(κ∗)
l′−1−i′

w∗i′

)]
= σ2

w gl,l′(κ)

after defining gl,l′(κ) ,
∑min(l,l′)−1
i=1 κl−1−i (κ∗)l

′−1−i, and ac-
cording to the assumptions made on {wl}k−1

l=1 . In the case κ ∈ R,
gl,l′(κ) reduces to

gl,l′(κ) = κmax(l,l′)−min(l,l′)
min(l,l′)−2∑

i=0

κ2i

=

{
κmax(l,l′)−min(l,l′) 1−κ2(min(l,l′)−1)

1−κ2 if κ 6= 1

min(l, l′)− 1 if κ = 1

Finally, (12) can be rewritten as

Cnlnl′ =
|β|2

r41
f l+l

′−2h (θ)hH (θ)σ2
w gl,l′(κ) + σ2

vδ
l′
l IN . (13)

These expressions are useful to obtain the explicit expressions of the
MLEs for θ and x1, as well as the associated CRBs.

3.2. GCMLEs and associated CRBs

The batch form of the GCMLEs for θ and x1 can simply be obtained
by plugging results of the previous section into (4)–(6). Even if the
computation cost of the batch form is prohibitive, we have used it
so as to check the correctness of the recursive forms presented in [3]
and completed in Section 2.2.

Since yk ∼ CN (µ,C), the CRBs on the variance of any un-
biased estimator of ξ = (θ,Re(x1), Im(x1))

T can be obtained by
inverting the Fisher information matrix (FIM) F(ξ), whose elements
are given, for 1 ≤ m,n ≤ 3, by the well-known Slepian-Bangs for-
mulas [5]

Fm,n (ξ) = 2Re

(
∂µH

∂ξi
C−1 ∂µ

∂ξj

)
+ tr

(
C−1 ∂C

∂ξi
C−1 ∂C

∂ξj

)
.

(14)
In order to compute the elements of F(ξ), the following results are
useful:

∂µ

∂θ
=

β

r21
x1

(
fk ⊗

∂h (θ)

∂θ

)
, (15a)

in which the elements of ∂h (θ) /∂θ are given, for 1 ≤ n ≤ N , by[
∂h (θ) /∂θ

]
n
= j2π(n− 1)ej2π(n−1)θ , and

∂µ

∂Re(x1)
=

β

r21
(fk ⊗ h(θ)),

∂µ

∂Im(x1)
= j

∂µ

∂Re(x1)
. (15b)

The derivatives of the covariance matrix C can be computed block-
wise. We can first notice that, for any l = 1, . . . , k and any m =

1, 2, 3,
∂Cn1nl
∂ξm

=
∂Cnln1
∂ξm

= 0. Focusing on the other blocks’
derivatives w.r.t. θ, we have, for 2 ≤ l, l′ ≤ k,

∂Cnlnl′

∂θ
=
|β|2

r41
f l+l

′−2 ∂h (θ)hH (θ)

∂θ
σ2
w gl,l′ (κ) , (15c)
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Fig. 1. Comparison of recursive and batch forms of GCMLEs versus
the number of observations k, for κ ∈ {1, 0.99}.

in which the elements of ∂h(θ)hH(θ)/∂θ are given, for 1 ≤ n, n′ ≤
N , by

[ ∂h(θ)hH(θ)
∂θ

]
n,n′

= j2π(n − n′)ej2π(n−n
′)θ . Regarding

the derivatives w.r.t. Re(x1) and Im(x1), we notice that we simply
have, for 2 ≤ l, l′ ≤ k,

∂Cnlnl′

∂Re(x1)
=
∂Cnlnl′

∂Im(x1)
=
∂Cnl′nl

∂Re(x1)
=
∂Cnl′nl

∂Im(x1)
= 0. (15d)

Hence, (15a)–(15d) can be plugged into (14) in order to compute the
FIM.

3.3. Numerical results

In this section, we provide results from simulation performed for
model (9), for true values of the parameters θ = 0.1 and x1 =
(1 + j)/(2

√
2), β = r1 = 1, σ2

v = 1, N = 10 and various val-
ues of κ. First, the correctness of the updated recursive forms of the
GCMLES is checked by exhibiting the perfect match between the re-
cursive and the batch forms in Fig. 1 for κ ∈ {1, 0.99}. Second, the
non-standard asymptotic behavior of the GCMLEs is highlighted in
Fig. 2–3. They present results regarding the estimation of θ (includ-
ing a zoom in the large-sample regime) and x1, respectively, with
values of κ ∈ {1 (in black), 0.999 (in red), 0.9 (in green), 0.5 (in
magenta)}. The empirical mean-square errors (MSEs) have been as-
sessed with 104 Monte-Carlo trials, and are displayed in solid line
without marker, while the CRBs are displayed in solid line with cir-
cle marker. As soon as κ < 1, we notice in Fig. 2 that a gap appears
between the MSE of θ̂ and the associated CRB (non efficiency), even
if it still decreases to zero (consistency). On the other hand, the MSE
of x̂1 in Fig. 3 attains the CRB (efficiency), but does not decrease
below some lower limit (non consistency). Such a non-standard be-
havior has to be expected when fluctuations exist in the source am-
plitudes. This illustrates the fact that Cramér’s and Fisher’s results
do not hold anymore when strict independence between the observa-
tions is not satisfied.
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